ON THE PROBLEM OF HORIZONTAL HYDRODYNAMIC IMPACT OF A SPHERE

(K ZADACHE O GORIZONTAL' NOM GIDRODINAMICHESKOM UDARE SPERY)

```
PMM Vol.22, No.6, 1958, pp.847-849
V.I. mOSSAKOVSKII and V.L. RVACHEV
    (Dnepropetrovsk-Berdiansk)
    (Received 29 October 1957)
```

The solution of the problem of the horizontal hydrodynamic impact of a sphere on a free fluid surface was found by Blokh [1] in the form of a series containing spherical (harmonic) functions. This note outlines a method by which a solution of this problem may be determined in closed form.

1. Let a spherical bowl be immersed in a fluid which fills the halfspace $z \geqslant 0$, so that its wetted surface has the equation $r^{2}=x^{2}+y^{2}+$ $z^{2}=1$. (The assumption that the radius of the sphere is equal to unity obviously does not affect the generality of the argument.)

Now suppose that the sphere suddenly acquires a velocity U_{0} along the axis $O x$. Then, allowing for the fact that the velocity potential $\phi(x, y, z)$ of the perturbed fluid motion is a harmonic function within the fluid domain, connected with the impulsive pressure p_{t} by the relation $p_{t}=-\rho \phi$, where ρ is the density of the fluid, we arrive at the following conditions:

$$
\begin{array}{rlc}
\varphi(x, y, 0)=0 & \text { when } & x^{2}+y^{2}>1 \\
\frac{\partial \varphi}{\partial n}=\frac{\partial \varphi}{\partial r}=U_{0} x & \text { when } & x^{2}+y^{2}+z^{2}=1 \quad(z>0) \\
\operatorname{grad} \varphi \rightarrow 0 & \text { when } & x^{2}+y^{2}+z^{2} \rightarrow() \tag{1.3}
\end{array}
$$

It may easily be shown that the function

$$
\begin{equation*}
\psi(x, y, z)=r \frac{\partial \varphi}{\partial r}=x \frac{\partial \varphi}{\partial x}+y \frac{\partial \varphi}{\partial y}+z \frac{\partial \varphi}{\partial z} \tag{1.4}
\end{equation*}
$$

like $\phi(x, y, z)$, is a harmonic function. From the conditions (1.1) and (1.2) we find that

$$
\begin{array}{ll}
\psi(x, y, 0)=0 & \text { when } x^{2}+y^{2}>1 \\
\psi(x, y, z)=U_{0} x & \text { when } x^{2}+y^{2}+z^{2}=1 \quad(z>0) \tag{1.6}
\end{array}
$$

Let

$$
\begin{equation*}
\Psi(x, y, z)=\psi(x, y, z)-U_{0} \frac{x}{r^{3}} \tag{1.7}
\end{equation*}
$$

Then $\Psi(x, y, z)=0$ when $r=1$. It follows from Kelvin's theorem that the function

$$
\Psi^{* *}(x, y, z)=-\frac{1}{r} \Psi\left(\frac{x}{r^{2}}, \frac{y}{r^{2}}, \frac{z}{z^{2}}\right)
$$

will be harmonic in the domain $r<1$. It is ohvious that $\Psi=\Psi *=0$ when $r=1$ and, moreover, we have

$$
\begin{equation*}
\left.\frac{\partial \Psi^{*}}{\partial r}\right|_{r=1}=\left.\left(\frac{1}{r^{2}} \cdot \Psi+\frac{1}{r^{3}} \cdot \frac{\partial \Psi}{\partial r}\right)\right|_{r=1}=\left.\frac{\partial \Psi}{\partial r}\right|_{r=1} \tag{1.8}
\end{equation*}
$$

Thus the function $\Psi^{*}(x, y, z)$ proves to be the analytical continuation of the function $\Psi(x, y, z)$ across the sphere $r=1$.

Let $F(x, y, z)$ be the function which equals $\Psi(x, y, z)$ when $r>1$ and $\Psi(x, y, z)$ when $r<1$. Then $F(x, y, z)$ will be a harmonic function in the half-space $z>0$, satisfying the following boundary conditions on $z=0$:

$$
F(x, y, 0)=\left\{\begin{array}{c}
U_{0} x \quad \text { when } x^{2}+y^{2}<1 \tag{1.9}\\
-\frac{U_{0} x}{\left(x^{2}+y^{2}\right)^{1 / 2}} \text { when } x^{2}+y^{2}>1
\end{array}\right.
$$

2. Let $F(x, y, z)=F_{1}(x, y, z)+F_{2}(x, y, z)$, where F_{1} and F_{2} are harmonic functions satisfying the boundary conditions

$$
\begin{gather*}
F_{1}(x, y, 0)=\left\{\begin{array}{cc}
U_{0} x & \text { when } x^{2}+y^{2}<1 \\
0 & \text { when } x^{2}+y^{2}>1
\end{array}\right. \tag{2.1}\\
F_{2}(x, y, 0)=\left\{\begin{array}{cc}
0 & \text { when } x^{2}+y^{2}<1 \\
-\frac{U_{0} x}{\left(x^{2}+y^{2}\right)^{3 / 2}} & \text { when } x^{2}+y^{2}>1
\end{array}\right. \tag{2.2}
\end{gather*}
$$

It may easily be shown that

$$
F_{2}(x, y, z)=-\frac{1}{r} F_{1}\left(\frac{x}{r^{2}},-\frac{y}{r^{2}}, \frac{z}{r^{2}}\right)
$$

so that

$$
\begin{equation*}
F(x, y, z)=F_{1}(x, y, z)-\frac{1}{r} F_{1}\left(\frac{x}{r^{2}}, \frac{y}{r^{2}}, \frac{z}{r^{2}}\right) \tag{2.3}
\end{equation*}
$$

We determine the function $F_{1}(x, y, z)$ by solving the Dirichlet probleal for the half-space:

$$
\begin{equation*}
F_{1}(x, y, z)=-\frac{U_{0} z}{2 \pi} \iint_{\xi++\eta^{*} \leqslant 1} \frac{\xi d \xi d \eta}{\left(\sqrt{(x-\xi)^{2}+(y-\eta)^{2}+z^{2}}\right)^{3}} \tag{2.4}
\end{equation*}
$$

Using the formulas (1.4), (1.7), (2.3) and transforming to spherical coordinates

$$
x=r \sin \theta \cos \omega, y=r \sin \theta \sin \omega, z=r \cos \theta
$$

we get

$$
\begin{gather*}
\mathcal{C}(r, \theta, \omega)=-\frac{U_{0} \sin \theta \cos \omega}{2 r^{2}}-\frac{U_{0}}{2 \pi} \cos \theta \int_{0}^{2 \pi} \cos \alpha d \alpha\left\{\int_{r}^{\infty} d r \int_{0}^{1 / r} \frac{t^{2} d t}{\left[1-2 t \sin \theta \cos (\omega-\alpha)+t^{2}\right]^{1 / 2}}-\right. \\
-\int_{r}^{\infty} \frac{d r}{r^{3}} \int_{0}^{r} \frac{t^{2} d t}{\left[1-2 t \sin \theta \cos (\omega-\alpha)+t^{2}\right]^{1 / 2}} \tag{2.5}
\end{gather*}
$$

In particular, it can be shown that when $r=1$,

$$
\begin{equation*}
\varphi(1, \theta, \omega)=--\frac{U_{0}}{2} \sin \theta \cos \omega-\frac{U_{0}}{2 \pi} \cos \theta \cos \omega \int_{0}^{2 \pi} P(\sin \theta \cos \alpha) \cos \alpha d \alpha \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
P(z)=\frac{1+3 z}{(1+z) V \overline{2(1-z)}}+\frac{1-3 z}{2\left(1-z^{2}\right)}-\frac{3}{2} \ln \left(1+\frac{V \overline{2}}{V \overline{1-z}}\right) \tag{2,7}
\end{equation*}
$$

Similarly, it is possible to obtain the solution of the so called "internal" problem of the horizontal impact of a spherical bowl half filled with fluid. In this problem, for instance.

$$
\begin{equation*}
\varphi^{*}(1, \theta, \omega)=U_{0} \sin \theta \cos \omega-\frac{U_{0}}{2} \cos \theta \cos \omega \int_{0}^{2 \pi} P^{*}(\sin \theta \cos \alpha) \cos \alpha d \alpha \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
P^{*}(z)=-\frac{1+3 z}{(1+z) \sqrt{2(1-z)}}+\frac{2 z}{1-z^{2}}+\frac{3}{2} \ln \left(1+\frac{\sqrt{2}}{\sqrt{1-z}}\right) \tag{2.9}
\end{equation*}
$$

3. For comparison with the solution given by Blokh, we calculate the virtual mass coefficient of the sphere λ_{x}, given by the formula

$$
\begin{equation*}
\lambda_{x}=-\frac{P_{t}}{2 / 3 \rho \pi U_{0}} \tag{3.1}
\end{equation*}
$$

where P_{t} is the resultant of the impulsive pressure forces acting on the wetted surface of the sphere:

$$
\begin{equation*}
P_{t}=-\iint_{(s)} p_{t} \cos (n, O x) d s \quad(d s=\sin \theta d \theta d \omega) \tag{3.2}
\end{equation*}
$$

Remembering that $p_{t}=-\rho \phi$, we thus have

$$
\begin{equation*}
\lambda_{x}=\frac{1}{2 / 3 \rho \pi U_{0}} \int_{0}^{2 \pi} \cos \omega d \omega \int_{0}^{1 / 2 \pi} \sin ^{2} \theta \varphi(1, \theta, \omega) d \theta \tag{3.3}
\end{equation*}
$$

Hence, using the relation (2.6) and evaluating the integrals, we get

$$
\begin{equation*}
\lambda_{x}=\frac{4}{\pi}-1=0.27323954 \tag{3.4}
\end{equation*}
$$

Similarly for the internal problem, we find that

$$
\lambda_{x}^{*}=4 \pi^{-1}-7 / 8=0.39823954
$$

The following values of the same coefficients are given in the work of Blokh: $\lambda_{x}=0.27322, \lambda_{x}{ }^{*}=0.39822$.

bibliography

1. Blokh, E.L., Gorizontal'nyi gidrodinamicheskii udar sfery pri nalichii svobodnoi poverkhnosti zhidkosti (The horizontal hydrodynamic impact of a sphere on a free fluid surface). PMM Vol. 17, No. 5, 1953.
